Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38393056

RESUMO

In this study, we investigated for the first time the anti-inflammatory and immunomodulatory properties of crude polysaccharide (PSHT) extracted from green marine algae Halimeda tuna. PSHT exhibited anti-oxidant activity in vitro through scavenging 1, 1-diphenyl-2-picryl hydroxyl free radical, reducing Fe3+/ferricyanide complex, and inhibiting nitric oxide. PSHT maintained the erythrocyte membrane integrity and prevented hemolysis. Our results also showed that PSHT exerted a significant anti-edematic effect in vivo by decreasing advanced oxidation protein products and malondialdehyde levels and increasing the superoxide dismutase and glutathione peroxidase activities in rat's paw model and erythrocytes. Interestingly, PSHT increased the viability of murine RAW264.7 macrophages and exerted an anti-inflammatory effect on lipopolysaccharide-stimulated cells by decreasing pro-inflammatory molecule levels, including nitric oxide, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF-α). Our findings indicate that PSHT could be used as a potential immunomodulatory, anti-inflammatory, anti-hemolytic, and anti-oxidant agent. These results could be explained by the computational findings showing that polysaccharide building blocks bound both cyclooxygenase-2 (COX-2) and TNF-α with acceptable affinities.


Assuntos
Clorófitas , Alga Marinha , Ratos , Camundongos , Animais , Antioxidantes/farmacologia , Óxido Nítrico/metabolismo , Alga Marinha/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular , Anti-Inflamatórios/farmacologia , Polissacarídeos/farmacologia , Lipopolissacarídeos/farmacologia , Clorófitas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
2.
Front Behav Neurosci ; 17: 1288814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098499

RESUMO

Introduction: Stress exposure is a significant concern in the healthcare sector. This animal model study aims to reproduce caregivers' working conditions and determine their impact on the brain. Method: Twenty-four healthy male rats of the Wistar strain were divided into four groups. Three groups were submitted each to one stressor for 21 days, while the fourth group was used as a control. Stressors were food and water deprivation (FW), permanent illumination (PI), and forced swimming (FS). At the end of the experiment, rats were euthanized, and stress biomarkers, biological parameters, and DNA damage were measured. Results: Prooxidant biomarker rates increased in the different groups (+50 to +75%) compared to the control (p < 0.0001). Urinary corticosterone rates increased in all stressed animals, mainly in the PI group, with changes of up to +50% compared to the control group. Acetylcholinesterase levels decreased to -50% (p < 0.0001 for the three exposed groups). Total ATPase, (Na+/K+)-ATPase, and Mg2+-ATPase activities decreased in all stressed groups. The percentage of brain cell congestion and apoptosis was 3% for the FW group (p < 0.0001), 2% for the PI group (p < 0.0001), and 4% for the FS group (p < 0.0001) compared to the control (0.8%). DNA damage was observed in all exposed groups. Finally, we noticed behavioral changes and a depression-like syndrome in all stressed rats. Conclusion: Stressful conditions such as the working environment of caregivers can trigger several pathophysiological processes leading to oxidative, neurochemical, and hypothalamic-pituitary-adrenal disorders. These changes can progress to cell damage and apoptosis in the brain and trigger psychological and physical disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...